Tutorial 10: Selected problems of Assignment q

Leon Li

6/4/2018

Q1) (Supp. Ex. 3)
Show that
$$S(x) := \sum_{j=1}^{\infty} \frac{\cos 2^{j}x}{3^{j}}$$
 is a continuous function on \mathbb{R} .
Determine whether $S(x)$ is differentiable on $/\mathbb{R}$
Pf) Note that for all $j \in \mathbb{N}$, for all $x \in \mathbb{R}$
 $\left|\frac{\cos 2^{j}x}{3^{j}}\right| \leq \frac{1}{3^{j}}$, and $\sum_{j=1}^{\infty} \frac{1}{3^{j}}$ is finite
 \therefore By M-test (Thm 3.10) ($S_n(x) := \sum_{j=1}^{n} \frac{\cos 2^{j}x}{3^{j}}$) converges
uniformly to $S(x)$ on \mathbb{R} . Since for all $n \in \mathbb{N}$.
So is continuous on $/\mathbb{R}$, by Continuity Theorem (Thm 3.6)
S is continuous on \mathbb{R} by M-test, $S_n (\cos 2^{j}x) = -\sum_{j=1}^{n} (\frac{2}{3})^{j} \sin 2^{j}x$
Thus as $\sum_{j=1}^{\infty} (\frac{2}{3})^{j}$ is finite, by M-test, $S_n (\operatorname{converges uniformly on /\mathbb{R})$
Thus fore, by Differentiability Theorem (Thm 3.8),
S(k) is differentiable on \mathbb{R} .

(22) (Supp. Ex. 4) Let
$$S_n: [1, +\infty) \rightarrow \mathbb{R}$$
 be defined as
 $S_n(x) := \sum_{j=0}^{\infty} e^{-jx}$.
(a) Show that S_n converges uniformly on $[1, +\infty)$
and $S(x):= \sum_{j=0}^{\infty} e^{-jx}$ is smooth on $[1, +\infty)$
(b) Show that S_n does not converge uniformly on $[0, +\infty)$
Pf) (a) Note that for all $j \in \mathbb{N}$, $x \in [1, +\infty)$,
 $e^{jx} \ge (jx)^2$, $\therefore e^{-jx} \le \frac{2}{jx} \le \frac{2}{j^2}$
Since $1 + \sum_{j=1}^{\infty} \frac{1}{j^2}$ is finite, by M -test,
 S_n converges uniformly to S .
Note that for each $x \in [1, +\infty)$,
 $S(x) = \sum_{j=0}^{\infty} e^{-jx} = \frac{1}{1-e^{jx}}$,
 $\therefore S(x) = \frac{1}{1-e^{jx}}$ is smooth on $[1, +\infty)$
(b) Note that when $x=0$, $S_n(0) = n+1$, $\therefore \lim_{n \to \infty} S_n(0)$ diverges
Therefore, S_n does not converge pointwisely hence uniformly, on $[0, +\infty)$.

(Q3) (Supp. Ex. 5) Let
$$(f_{3} : E \rightarrow IR)$$
, be defined
and $g_{n} := \sum_{j=1}^{n} f_{j}$ Converges pointwisely to $S(X) (= \sum_{j=1}^{\infty} f_{j}(X))$
(a) Then for any $g : E \rightarrow IR$, for all $X \in E$,
 $t_{n}(X) := (g : A(X) = \sum_{j=1}^{n} g(X) : f_{3}(X))$ Converges pointwisely to $t(X) := g(X) : S(X)$
(b) If (S_{n}) converges uniformly to S , and g is banded,
then the converges uniformly to T on E
Pf)(a) For my $X \in E$, $\forall E > O$. $\exists N \in IN$ such that $\forall n \ge N$,
 $|S_{n}(X) - S(X)| \le \frac{2}{|I+|g(X)|}$
then $|t_{n}(X) - t(X)| = |g(X) : S_{n}(X) - g(X) : S(X)|$
 $= |g(X)| : S_{n}(X) - S(X)| \le |g(X)| \cdot \frac{2}{|I+|g(X)|} \le E$
 $\therefore : t_{n}(X)$ converges to $t(X)$ pointwisely

b) Since g is bounded, there exists $M \in IR$ such that for all $x \in \mathbb{E}$, $|g(x)| \leq M$ VE>O. INEW such that YNZN, YXEE, $|S_n(x) - S(x)| \leq \frac{\varepsilon}{1+M}$ then $|t_n(x) - t(x)| = |g(x)| |S_n(x) - S(x)| \leq M \cdot \frac{\varepsilon}{1+M} < \varepsilon$ in the converges uniformly to t Remark: Note that same conclusions hold for any sequences of function $S_n: \in \rightarrow \mathbb{R}$, not necessarily a sequence of partial sums of functions.

Q4) (Supp. Ex. 8) Let Sn: IR -> IR be defined as $S_n(x) = \sum_{i=0}^{n} \frac{x^i}{j!}$ Show that Sn does not converge Uniformly on R. Pf) Suppose on the contrary Sn converges uniformly on R. Then by Cauchy Criterion (Thm. 3.4) For $\varepsilon = 1$, there exists NEIN such that $\forall x \in \mathbb{R}$. $S_{N+1}(x) - S_{N}(x) \leq 1$. I (N+1) SI, for all XER which is a contradiction, e.g. choose X=N+1 Rmk: Note that Sn converges Uniformly on any bounded intervals. (Thm 3.11 (a))